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ABSTRACT 
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, barJons, and the group-theoretic structure 

of the constituent quark model are incorporated into 

the topological expansion scheme of hadron physics. 
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1. INTRODUCfiON 

A scattering can be represented as a sum of contributions 

from all ways in which the process can occur. Each contribution has 

a phase factor, and the scattering amplitude between chosen 

states tends to be small due to an averaging-out of these phase factors. 

The dominant transitions are between states in which the elements of 

order characterizing the initial state are carried into the final 

state in some "direct" way. 

This of the the domina~t transitions to preserve order 

is particularly important in hadron physics, due to the inherent 

of the hadrons and their interactions. Indeed, this 

order-preserving tendency has been made the basis of a successful 

approximation procedure for meson physics. This procedure is based 

not on the smallness of any coupling constant but rather on the 

smallness of contributions that do not preserve order. Order is 

defined so that it is preserved contributions to the scattering 

amplitude that correspond to sequences of scattering events 

represented by graphs that canbedraw11 in a plane with no lines 

crossing. Contributions from non planar graphs generally have phase 

factors that tend to average to zero in high-energy regimes. 

TI1is topological approach to hadron dynamics,which 

in some works Veneziano1 , and has been pursued by w~y workers, 

has been recently reviewed by Chew and Rosen~ij. They show how 

the topological expansion procedure, combined with the requirements of 

unitarity, analyticity, duality, and Lorentz invariance, organizes and 

predicts many of the dominant features of meson physics. 
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The two major deficiencies in the theory described by Chew and 

Rosenzweig are the omission of spins and baryons, The aim of the 

present work is to complete the theory these two 

elements .. The group-theoretic properties of the constituent-quark model 

of hadrons are also incorporated. Thus the baryons constructed 

from three kinds of flavors fall into the familar (56~ and 

The is formulated completely within the S-rnatrix framework, 

and involves no description of the hadrons in terms of 

quark wave functions . Thus it provides a covariant approach to 

hadron physics that the group-theoretic properties of 

the model and has no confinement 

The theory is the product of a intermittent collaboration 

with OJ.ew, and his ideas are woven into it in many ways. 

The technical formulations are of my own but the general 

strategy key suggestions OJ.ew. 

The present paper is associated with a recent series of papers 

Chew and Poenaru. 3 It describes technical results that have been 

used in the development of their ideas. However, the aims of Chew 

and Poenaru are broader than those of the present work, which 

accepts the structure of the constituent-

quark model on the basis of its success. OJ.ew and Poenaru 

seek to derive the group-theoretic structures from topological 

consideraticnsand consequently need a richer topological structure 

than the one used here. Their structure contains , in 

addition to the quark-particle graphs of the present and 
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surface upon which these graphs are imbedded, also a second surface, 

called the quantum surface, in which the group-theoretic relations 

associated with flavor and other symmetries reside. 

In the present work flavor is an unconstrained variable. The 

flavor structure may in fact be determined by the nonlinear dynamical 

equations, but it is not determined within the present framework by 

topological considerations alone. 

The theory is based on the covariant treatment of spin 

by the M function formalism. Since the earlier description of this 

was very brief the key are described here in §2, 

with particular emphasis on those results that are in the 

context of the present work. 

The of into the meson sector is described in 

§3. It has two principal innovations, compared to earlier efforts 

in this The first is a novel way of incorporating parity 

conservation. This procedure allows for effective parity in 

the intermediate states at the lowest level of the topological 

expansion scheme, although the particles are 

present neither as external at any level, nor as internal 

particles in the full theory. 

These effective parity doublets are artifacts of an averaging 

over phase factors that suppresses certain averaged contri-

butions, and justifies the classification of these contributions 

as higher-order in the topological expansion. However, when individual 

£ values are considered this averaging is not possible, and the 

lowest-order approximation is inadequate. 
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The second novel feature in the meson sector is the absence 

of p~~ coupling in lowest order of the topological expansion. This 

resonance is quite narrow, a~d pTI~ is considered a higher-

order effect. 

Baryons are treated in §4. The topological structure is 

essentially the same as in the meson sector. This is achieved 

by treating the baryon at the lowest-order (zero-entropy) level of 

the topological expansion as a quark-diquark combination. The novel 

feature in the baryon sector is the introduction of a two-dimensional 

representation of the group s3 in association with 

each of the vector indices ~i that arise in connection with the 

Regge recurrences of the baryons. The physical are 

required to be invariant under all permutations of the group s
3

, 

sepa:vately to ThiS imposes a full permutation 

symmetry analogous to that of the constituent-quark model, and leads 

to the familiar Z = 0 and Z = 1 

An appendix contains a brief description of the reasons for the 

f "1 f 1" 6-lO . b . h a1 ure o ear 1er attempts to 1ncorporate aryons 1nto t e topo-

logical expansion. 

2. SPIN 

2.1. Lorentz Transformations in Spin Space 

Let 0 represent the Pauli spin-matrix four-vector 
~ 

0 
J.l 

(o0 , ol'02, 03) c1, a), (2.1) 

where is the two-by-two unit matrix and 
' Ci 2' and o3 are 
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the three Pauli matrices: 

-i) 0 ) 0 1 = ' 0 2 = o , 0 3 = -1 · (2.2) 

Let A and B be any two-by-two matrices with determinant one. 

Then the Lorentz transformation matrix v(A,~) is defined by 

B ov J.l (A,EI) _ (o•L) 
J.l 

(2.3) 

(Repeated vector and spinor indices are always to be summed.) 

Let 0 represent the Pauli spin-matrix four vector 
J.l 

0).1 (1, -0 ) . (2.4) 

Then 

1 -
7 Tr q1loV ' 

(2 

where ~v 
is the Lorentz metric tensor with diagonal elements 

(1, -1, -1, -1). 

Let C = - i 0
2 

= - CTr be the (charge) conjugation matrix, 

and let M be any two-by-two matrix. Then the Pauli 

entails that 

Trc 

and that 

M 

0 
J.l 

det M. (2 

(2.7) 
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(2. 8) 

To specify four different ways of applying transforms to spin 

indices four different types of spinor indices are introduced. The 

spin transformation A = acts on the different types of 

spinor indices according to the rules: 

A 

A 

A (¢B) 

A 

A a' 
a <i> I -a 

¢ BS' = (¢B)• 
·< • s s s 

s s' 
13'¢ 

a 

a' 

(B-l¢)13 

(¢A-l) a 

(2. 9) 

Thus the transformation to be applied is determined the location 

of the index (upper or lower) and whether it is dotted or undotted. 

The operator A acts like the identity on any sum of the form 

¢a~a or ¢S~S For example, 

A ) (A¢ a) 

i i' 

(¢a a •) 

a 
¢ 'Pa (2.10) 
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Let a1 , a2, ... , be any set of 2n four-vectors. Then 

1 T - -z r ~ •a a2•a a3•a . . • a2n·a (2 .11) 

is a Lorentz-invariant function of the four-vectors , .•. a2n. To 

see this let the indices on a and a be specified always in the 
Jl Jl 

following way: 

o +a • 
11 JlaS 

Then (2.3) and (2.8) become 

_/\all 

a .... a sa 
Jl 11 

A a 
Jl 

(2. 

(2. 

of the operator A leaves invariant the trace 

(2.11), due to (2. It gives, alternatively, virtue of (2 .12) , 

i Tr (av • ••• (2.13) 

Thus the trace is invariant under any Lorentz transformation of all 

the vectors 

Two important special cases are 

1 T -"l r a2•a • a2 ' (2. 

which follows from (2. 5), and 
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1 -
7 

Tr o a
2

oo- a
3

oo a 

Cal . a2)(a3 0 + • • a3) - Cal . 

where 

[al' a2, a3' 

+ i [ a1 , a2 , a
3

, ' 

]JVOO 
ala2a3a4 s]Jvoo 

Here s is the fully antis)'Jlllrntric matrix with s0123 = L 

2.2 Covariant Spin-Projection Operators 

Let P = mv be the momentum-energy of a freely 

(2.14b) 

(2. 

particle, as measured in some general Lorentz frame ~. Let s 

be a spin vector that satisfies s • p = 0. Let ~(v) be 

the particle-rest-frame obtained by applying a "boost" to :2:. 

This boost is a Lorentz transformation that leaves any 

space component that is perpendicular to ~- The vectors v and 

s as measured in ~(v) are 

and 

= = (vro ,~r) 

sr = (sr) = (sro, -;r) 
j1 . 

(1, 0,0,0) 

r r r) 
(0, sl, sz, s3 

The rest-frame projection operator is 

(2 .16a) 

(2. 
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Pr(s) = .!_ (1 + ~r • ~) 2 . 

1 ( r r)J1- 1 r) _ 7 v + s djl = 7 + s • 0· (2.17) 

This operator projects onto the state in which the spin is 

directed along sr = (0, ;r) as measured in ~r(v), and hence 

along s as measured in ~-

The operator Pr(s) refers to the rest frame Lr(v). To 

eliminate this frame dependence one may apply the boost A(A,B) 

that converts from its form in to its form in the 

general coordinate frame L: 

Pr(s) + p(r)(s) 

(s) 

1 -7 ° · + Lsr) 

1 -7 o 0 (v + s) 

} (v + s)· a 

_ P(s, v) (2.18) 

Real Lorentz transformations are generated by matrices A and 

B that satisfy A= Bt, where dagger denotes hermitian conjugation. 
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For rotations A is unitary, but for boosts A is hermitian. The 

boost that converts the rest frame form into the general 

coordinate system form P is 

A(v) = Bt(v) = =~ (2.19a) 

A-1(v) = (v) = (v) =jv.ij (2.19b) 

where 

~= 6 c_,. exp -z- a • = cosh t + n . t sinh t (2.20) 

and 

v • 0 = exp e(cr • ~) = cosh 6 + n . a sinh 6 

+'if 
_,. . (J -

-> + + n • a - (2. 

Note that 

v•o v·(j 1 (2. 22a) 

and 

~ ,rv-;(f 1 (2.22b) 
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Another useful form is 

_,. ->-
+ 1 + v· a 

~ 
(2v 

0 
+ 2)'2 

(2.23) 

The operator 

P(s,v) --- 1 -:tr """' /v • a -z- (1 + s • aJ ,;;;r;-a (2. 

1 ( - -) =-z-v•a+s a 

is called a covariant operator. The vectors v and s 

occurring in P (s • v) have components -Jl and s!l that refer to 

the general frame of reference ~. 

Because the boost operators and are hermitian, 

rather than unitary, the operator P(s, v) is not a true 

- 2 - ->-operator: P(s, v) 1 P(s, v) for v 1 0. 

The covariant spin operators are Lorentz invariant spinor 

functions in the sense that 

' P(s, v) · (2. 25) 

Here A = A (A, B) :and L 

from (2.12). 

This result follows directly 

2.3 M Functions 

Consider first a scattering process involving one spin-~ 

in the initial state and one particle in the final 

state, and an number of spinless particles. Let 

P = (pa, ta; ,pc, tc; ... ; , where is the 

mathematical momentum-energy of the final spin-~ , 
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is the mathematical momentum-energy of the initial spin-~ particle, 

and Pc' ... , are the mathematical momentum-energy vectors of 

the spinless particles. The mathematical momentum-energy vectors are 

equal to plus or minus the physical momentun1-energy vectors for 

final and initial particles respectively. Thus Pa = mava and 

= - , where > 0 and > 0. 

The t. are the mathematical type labels. are related 
J 

to the physical-type labels by the relation t. = t~hys/sign 
J J 

where tj label relative antiparticles. and These type -t. 
J 

variables are sometimes suppressed. 

According to quantum theory the probability for a scattering 

specified by (p, sa, sb) is proportional to 

1 -r T Tr P (sa) S , (2.26) 

where S is the S matrix. This can be written as 

l - " t 
2 Tr P(sa, 1-'(sb, M , (2. 27) 

where, as in §2.2, 

P(sa, va) ;:::;-;0 :pr ( s ) ,;y:---a 
a a a (2.28a) 

P , =I~ (sb) I • 0 (2.28b) 

and 
~ S(p) 

a ~ (2.29a) 

~ St(p) ~ a (2.29b) 

The physical probability is assumed to be Lorentz invariant. This 
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physical invariance ensures that if the spin indices of and 

~r are assigned spin-index type according to the rules 

and 

..,. M • 
a.S 

t 
..,_ M • ' 

a.S 

(2.30a) 

(2 

then the spinor functions and are Lorentz invariant: 

for all proper (det L = l) real Lorentz transformations 

) (2.3la) 

and 

, (2.3lb) 

with 
-1 

(L Pa• ... , L .(2.3lc) 

These invariance properties entail that if 

defined by 

M(p) ;;; m].l 0].l = • 0 

and 

= mt].l(p)0J.I -

then the quantities 

the set of vectors p: 

) 

and 

• 0 

and are 

(2.32a) 

(2.32b) 

are vector functions of 

(L ) 
i· (I.m ) ].l 

(2,33a) 

(2 .3.3b) 
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Consequently, by virtue of (2.12),the spinor functions 

- 2i = ·0 
jJ 

(2. 34a) 

and 

M = 0u = ·0 (2. 34b) 

are also Lorentz invariant spinor functions: 

(2.35a) 

ai1.d 

t(L -1 ) (2.35b) 

These transformation properties do not hold for the S-matrix 

S(p). 

The foregoing discussion can be immediately extended to processes 

in which there are n initial spin i particles, n final 

particles, and n' spinless particles. In this case the M 

function can be written in the form (with type labels 

1 
2 

, ' az; Pb2' B2; · · ·; Pan' · · · ,) 

n 

m 
2 • • X IT (2.36) 

i=l 

where m ~ is a tensor function of the vectors 

p 

jJ 1 .. 
m 

16 

(pal , · · · ' Pan, ' · · ·' ) : 

( 

n 

i~l 
\!1·. ·\! 

m n(p). (2. 37) 

The way in which the n initial spin-~ are associated 

with the n final spin-~ is immaterial: (2.37) holds in 

any case. 

2.4 Parity 

Let be written as S s+ + s , (2. 38) 

where 

= ± s± (2. 

Here 

-p 
' ' G .. .,, ' 

- 1\), (2.40a) 

and 

(2. 

Let an intrinsic s" be assigned to each j, and 
J 

define the operator 

(S 
N 
fi 

j=l 
(2 .41) 
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The product of 's for allowed processes must be + 1 or -1. 

Invariance under parity is then expressed by the equation 

g>cs(p)) S(p). (2.42) 

If this equation is satisfied then S 
N € 

defined in (2.38) must 

be zero unless E = n €j • 

Consider a process in which n initial spin-lz particles, 

i = 1, . . . , n, are scattered into n filial spin-1-z particles. Let 

Pai and pbi denote the final and initial mathematical momentum-energies 

of the i th particle. Let , . • . , Pn, ) denote the momenta of n' 

spinless particles that also participate in the reaction. Then 

as already mentioned, the M matrix can be written 

' ; ' tbl; Pan' · Pbn' ' ' · · · 

m t) 
n 
n °].Ji 

i=l 
(2.43) 

where the matrix elements of 0S~) are 0].J.a.s. The connection 
l l l l 

of to S(p) can be represented by the 

(TI ;'~rJ) S(p) (TI 
i al i 

- ,;v;;_;:G s ~ . (2 

Define now 

(p) (TI / v . • 0 (
1
)) s ( rr r----=w ) . al + u /Vb. •o . 

l - i l 
(2 
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Then 

M 
± ( i s±C:P)( ~/:vbi. oCiJ) 

= ± s± 

= ± en ./i))M en 
i ± i 

'"(i l 
• 0 'J. 

This equation can be inverted to give 

M =±Cnv .• 0(i)) 
± i a1 

(p)(TI vb. • 0 ) . 
i l 

(2.46) 

(2 

The parity transformation to the M functions is defined 

to be 

N 
) - ( n €.) ( n v . • ) ( I.1 vb .• 0 

j=l J i a1 1 1 

Then (2. 48) and (2. 4 7) ensure that the condition 

) = 

is equivalent to the condition that 11: be zero liDless 

which is equivalentto the invariance condition 

(2 

N 
€ = n sj' 

j =1 

) = S(p). 

For n distinguishable spin-lz particles the no-scattering part 

of the S matrix has the form 

) 
3o3 

+ pbi) (2. 
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The corresponding M function is 

R ·a(i)(21T)3o3(pai+ 2wiJ. 
i=l 

(2. 51) 

In order that this no-scattering part be invariant under parity 

(for each particle i separately) we must take £ai £bi = 1 for 

all i. But then (?,48) gives 

f/(p • Ci ) a (- Pt • cr) • (2.52) 

This which stems from the condition that the no-

scattering part be nonzero, is used later. 

Analysis of the pole singularity11 shows that the analytic 

continuation of an path from an original 

region where > 0 to a where <o gives the 

function that describes a process in which the final particle of 

type is replaced an initial particle of type -tai> i. e., 

the of the original particle of type If the 

final carries q units of any conserved '-'U'"-'"'··'"'· 

out of the reaction then the must carry -q units 

into the reaction. This holds both for the total momentum-energy 

Pai' for the components of spin, and for any quantity that is 

conserved by virtue of invariance under a p-independent transformation 

property. Consequently, the mathematical momentum-energy vector Pai' 

the mathematical spin vector , and the mathematical type label 

tai are equal, after the to minus their physical values: 

= phys /sign 
Pai 

sai = 0 phys /sign Pai sa:i. 

0 = tp~ys /sign Pai tai al. 

A similar argument gives 

_phys /sign 
= JFbi 

0 phys /sign Ptl =- sbi 
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(2.53a) 

(2.53b) 

(2.53c) 

(2 .53d) 

(2.53e) 

(2.53f) 

The minus sign in (2.53e) arises from the fact that sbi characterizes 

the physical of the initial particle bi, not minus the physical 

spin. The pbi and were defined originally to be minus the 

physical momentum-energy vector and minus the physical particle-type 

of the particle , and hence the equations for these are 

the same as those for p ai and t ai . 

The occurring in the transition formula 

Tr ~ + SJ·O M(pa,ta; 

x !. . 5 Mt(Pa' ta; 2 (2. 

are to be interpreted with the aid of (2. 53) , Thus, for example, if 
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p~ and are both positive then the sa and sb in (2.54) 

are s~hys and ~s%hys , respectively, and the particle types ta and 

tb and t;_hysare tbhys, In this way we can use the same expression 

(2.54) in all the different channels. 

The transformation was defined to be 

) 
( 

N n 
n vai. M(p~ n (2. 

In the original channel > 0, p~i <O) the parity 

invariance = can be written as 

= ( ~ -p~: 0) 

p.•cr) n •cr) 
= al. . M(p) n ' 

ma1 
(2.56) 

where use has been made of the direct-channel result e:aie:bi 1, 

derived from forward (See (2 .51)), 

continuation to the crossed channel avoids all 

singularities of and Thus equation (2.56) must hold 
n'· 

in all channels, with the factor e:j from the spinless 

particles defined as in the channel. This 

gives 

n' n 
M(p) =I n n sign 

=1 i=l 

( ~ v . ·a) ( n 
X n . 

(2. 57) i=l al ; ==1 
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It will be shown presently that the transformation is 

defined in all channels (2. Thus one can conclude that the 

e:j for the particles is channel independent and that 

€ ai e:bi p0 . sign a1 (2.58) 

This means, in particular, that the intrinsic of each spin-!z 

particle must reverse under continuation to a crossed channel and 

that the intrinsic of a particle-antiparticle pair is -(-l)i. 

The product of the intrinsic of the particles of a 

parity conserving process is physically well defined: it l.s equal 
LJI,. 

to the e: in S(p) = e:S(p), and hence to (-1) J The 

argument to the equivalence of = to 

) = , with as defined in (2.55), was made "'""'"·u·'-" 

in the direct channel. However, it holds well in all channels, 
N 

provided the same factor n occurs in both ) and 

). Any extra or factor ei¢, that one 

introduce into the connection between and , in any 

given physical region, would be the same that physical 

region and would out of (2.47), and hence not affect the 

argument that demonstrates the equivalence between ) = 

and = , with ) defined as in (2. or (2.55). 

Thus this definition is applicable in all channels, and the result 

(2.58) on the intrinsic of lz particles holds. 12 

2.6 Antiparticle Conjugation 

Consider a process in which and are both positive, 

so that the two associated particles are both final particles. 
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Suppose that tai=- , so that these two final particles are relative To see the consequences of this condition define 

antiparticles. 

Consider now an value of (pai' and an analytic c..o M(p t · -t) = u • cr t; p • cr ~, a' ' a a (2.61) 

continuation that stays in the physical region of the process, but 

interchanges Pai and leaving all other p's unchanged. Suppose where u = and a 
Define also 

we interchange also s~hys and s~hys Then the process and 

the second one are physically the same except for the interchange - 1 ( - Z 1 ±~) M. (2 .62) 

tai ++ , which is just tai ++ - tai" 

Suppose that the transition probabilities for these two processes Then M = + , and the property (~ 2 = 1 gives 

were the same. Then the process would be invariant under the 

transformation ++ - Antiparticle conjugation invariance (2. 63) 

is invariance under the analogous t -++ - t . for all i. 
al. a1 

If we keep only one pair, for notational Hence if M = or then M = ± 

the conjugation invariance condition Insertion of this condition M =±~Minto the LH side of 

described above is (2. 59) gives 

Tr(v + sphys )•Ci sphys) •cr (p 
a a ' b a' 

Tr (v + sphys )·cr u •cr , Pa) ub•cr a a a 

= Tr + s~phys)·cr - sbPhY5_).iJ Mtp~, ,(2.59) X 
phys --sb )·cr MT Pa) • (J 

where (2.53) and (2.54) are used, and Tr - sphys )•cr M 
a ' 

p' = 0 > 0 
a Phys -t ) 

x + sb ) .cr M Pa 

Pa 0 > 0 
Tr + sbhys) • cr P) - s~hys ) • o 

s~phys = phys 
sb 

x , Pa)' 
,phys = sphys (2.60) sb a 
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where in the second line the relations 

• (J u•O'=l 
a 

(2 .65 a) 

and 

s • 0' u. (J = - ua·O' s • o for s . = 0 
a a a a 

(2.65b) 

are used, and in the last line the equations 

0 = 0Tr C (2.66a) 

and 

0' c-1 0 Trc (2.66b) 

are used. Comparison of (2.64) to the RH side of (2.59), with the 

substitutions (2. made, shows that the condition M = 

implies antiparticle conjugation invariance. 

Notice that 

~p • 0 = • (J 
a (2.67a) 

and 

0= pb• o. (2.67b) 

Thus both pa· o and o, and any superposition of them, is 

invariant under 

2.7 CPT Invariance 

The physical transflrmation corresponding to 

p~hys + p~hys , s~hys + _ s~hys , t~hys+ t~hys 
J J J J J J 

CPT is 

, In-<-+ Out· 

(2.68a) 
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The corresponding mathematical transformation is, by virtue of (2.53), 

pj +- pj, sj + sj, tj + tj. (2.68b) 

Thus CPT invariaDce is equivalent to invariance of transition proba-

bili ties under the tran.sformation p. + -
J 

(all j). 

Any Lorentz invariant spinor fu_nction ) is invariant, up to a 

sign, under the transformation p. _, - p. (all j). For the Lorentz 
J J 

invarian.ce condition 

AM(L ) ) ) (2.69) 

applied for the case A l, B - l gives, by virtue of (2.3 

and (2.9), 

M(-p) (-1) ), ( 2. 70) 

where is the number of dotted spinor indices (I mean here dotted 

two-valued spinor indices: Dotted (u_ndotted) spinor indices for 

spin ~ particles can be constructed trivially by combining 

n + 2m dotted (undotted) two-valued spinor indices by means of the 

usual Clebsch-Gordan coeffieients. Thus a dotted spin n . 2 sp:1nor 

imiex contributes a term n to 

The matrix B - 1 can be continuously connected to B = 1 

by the matrix 

B(ljJ) (2.71) 
e 

which satisfies B(O) l and B(l) - l. 
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Since all Lorentz invariants are invariant under all real and complex 

Lorentz transformations the transformation L(A,B) = L(l, ), with 

0 ~ ljJ ~ 1, must generate complex values of the p. , since no real 
J 

mass-shell vector pj l1);J can pj _,. - Pj. 

The matrices M(p) and have been assigned the transformation 

properties indicated by the and Mt, For 
aS 

real p the matrices and related by hermitian con-

jugation: 

CMs& ) *. (2.72a) 

Thus if M is transformed a real Lorentz transformation to 

AMB then is transformed to and is transformed 

to = as indicated by the indices on 

For complex Lorentz transformations the condition A = Bt does 

not hold. However, (2.72a) is then inappropriate: the ~nn~·~n'·' 

definition is 

* M 
Sa 

* 
) . (2.72b) 

This quanti'cy is an analytic function of p, whereas the function 

on the RH side of * (2. 72a) is an analytic function of p . 

function defined in (2. will continue to satisfy the 

Lorentz invariance condition 

c~l 
n 
fl 

The 

(2. 73) 

28 

for complex Lorentz trans£ormations. 13 Thus in the formula for 

bilities the factor from (2.70) will be cancelled the same 

factor (-1) from 

~l 
N 

(-1) ~J[t 

Hence will be invariant under CPT. 

2.8 Statistics 

(2. 7 4) 

The order of writing the variables is If the variables 

in the set of arguments p = , ; , t 2; . . . ; is such 

that all variables referring to initial particles stand to the right 

of all variables referring to final then one may wTite 

p = (pfin; By convention 

· Pin) = < I S > (2. 

where is obtained from reversing the signs of all 

energy vectors and all type variables tj' and reversing the 

order of the variables. Thus if 

(2.76a) 

then 

(-pn' - tn; ... , (2. 

The representing < IS I p. > is generally 

drawn ordering the lines from top to bottom in the sequence in 
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which the corresponding arguments of and appear. The 

lines correspondin.g_to- are on the right-hand side; those 

corresponding to are on the left-hand side. The variables in The quark diagram D is converted to the quark 

(2.50) are in the order p2a, ... p2b, , so that each graph G = by to a vertex the ends of the two 

particle line goes straight without a change in order. lines at each opening of D. Thus each vertex of a meson 

The functions S (p) and are assumed to be anti symmetric quark graph G corresponds, at some level of approximation, to 

under the interchange of any two spin-~ particle variables , ti) an initial or final of a scattering process. The zero-

and , tj) . Analytic continuation -+ in (2. changes entropy corresponding to a process with n particles is 

the of (2.51). This change is cancelled by the change of represented, therefore, by a directed circular graph with n vertices. 

the order of variables required to bring the variables back into the The n directed edges that connect these vertices all run in the same 

form (pfin; Thus (2.50) and (2.51) hold in all channels, for direction, as illustrated in Fig. 1. 

p = , with the corresponding variables of and The are not abstract graphs, but are graphs 

occurring in the same order. on an oriented surface. The orientation of the boundary of the 

With these crnventions the relationship (2 between oriented circular disc bounded by the quark line is indicated a 

and S(p) holds in all channels. second arrow , as shown in . 2 and 3 . The two graphs of 2 

Combinatoric factors 1/n~ are discussed in Appendix A of are equivalent to each other, and the two of 3 are 

ref. 14. equivalent to each other. But those of Fig. 2 are not 

3. MESONS to those of Fig. 3. 

3.1 The Zero-Entropy Amplitudes 

The basic blocks of the are the 2 

zero-entropy amplitudes. In the meson secto~ each zero-entropy 

is represented by a quark diagram D of the kind shown in 

Fig. 1, or by the graph G also shown there. 
"ortho" graphs G0 

2 Diagram D Quark G(D) 2 2 

Figure 1 A zero-entropy quark D and the equivalent 

G = G(D). 3. Two equivalent graphs Gp 
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The circular graphs in which the directions of all the quark 

lines agree with the direction of the boundary of the enclosed 

oriented disc , as in Fig. 2, are called "ortho" graphs. The 

circular graphs in which the directions of all the quark lines are 

opposite to the direction of the boundary of the oriented disc, as 

in 3, are called "para" graphs. 

For each ortho or para G there is a corresponding 

If G has n vertices then this has a set 

0-t ) = (]:l 1 ' · · · ' ]:ln ) of n vector indices . The corresponding 

to G has the form 

= (G, ' (3.1) 

where is a function of the scalar products of the 

mathematical momentum-energy vectors in the set 

of arguments p = , ; .•• ; Pn, For any ortho 
0 

G = G the funct!on F(]:l) , is 

(Go, = - n z) -~ 
i=l 

xrraP1·oap2·o···a P·o 
]:ll 1-2 ]:ln n 

(3.2) 

This factor (CO, is minus the trace of a matrix formed 

from right to left following the sense of the quark arrows in 

and each vertex i by iJ I ,fT and each edge by ]:l· 
l. 

the ortho quark "propagator" • 0 lmai = un~ • 0 , where 

Pai is the mathematical momentum-energy vector associated with 
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the vertex that lies on the end of that quark edge. 

If is the para graph obtained from G0 by reversing the 

orientation of the disc then 

p) = ' ) • 

Thus the function A(G, is invariant under the 

in the sense that = Gp and = G0 then 

cf!IG, P) (G, p). 

The action of on any A is by (2. 48) . Thus 

and, virtue of (2.52), 

(Gp' 

p), 

n 
n 

i=l 
(2m~)-~ 

l. 

(3.3a) 

(3.b) 

(3.4a) 

X Tr(-p • o) a (-p • o) ... (-p "O) a (3 4) 
1 ]:ll 2 n ]:ln • 

This part of the para amplitude is minus the trace of a 

matrix formed from to left following the sense of the 

quark arrows in and replacing each vertex i of 

iJ I 12 and each edge by the para quark "propagator" -
]:li 

o, where pbi is the mathematical momentum-energy 

• ol~i 
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vector associated with the vertex that lies on the trailing end of the 

quark edge. 

Notice that in both the ortho and para cases the orientation of 

the disc points from each edge to the vertex whose momentum appears 

in the propagator corresponding to that edge. 

Each vertex i is associated with a spin four-vector si. For 

2 a vector \ • pi = 0 and si = - 1. For a pseudo scalar 

particle s. = v. , and s ~ = 1. The vector s. is the "wave function" 
l l l l 

of particle i in spin space. The ortho and para amplitudes them-

selves are therefore 

' p ,s) 

and 

A(GP, p, s) 

1 ri 
(-)Tr(siO' •o 
;z-

X ' p) 

n 

( ..::.!. ) 0 ·0 
IT 

X f(Gp' 

3.2 

·0 ·o) 

(3.58;) 

uno silO') 

(3.5b) 

Let and be ortho and para graphs related by disc 

reversal. Since and are related b,r = 1, the 

sum A(Gp) + is invariant under To see this 

explicitly use 

.o . a = ± si· 0 

{
. + for spin 
- for 

0 
1 

• a 
(3.6) 
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to obtain 

' p ,s) ( ..::.!_ ) n . of spin 1 's 

/Z 

X Tr Sl•O a 0 Un• 0 

X (p) 

l n f · 0' C _) • o spm s 

/Z 

x Tr s
1
·o o a 

X ' (3.7) 

where = and f 0 
= 

Any trace Tr 0 a2• o a3• 0... • o is a sum of a scalar 

part that is unchanged ai ~ ai and a pseudoscalar part that 

changes sign. Since = the equations (3.5a) 

and (3. 7) imply ~ith , = ) that 

Ao + 2x scalar part of (3.8a) 

if nuof zero's is even 

+flY Zx pseudoscalar part of 

if no.of spin zero's is odd. (3.8b) 

This means that + Ap conserves , the spin-zero 

particles are identified as pseudoscalar particles and the spin-one 

particles are identified as vector particles. 
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3.3 Antiparticle Conjugation 

The ortho and para propagators are • o)/mai and 

(-pbi • o)/~i' respectively. According to (2.67) these forms 

are invariant rnder the antiparticle conjugation operation ~ This 

result suggests that the ortho and para should be 

se};larately invariant rnder ~.antiparticle conjugation. This invariance 

would, in be strictly if the could be considered 

separate entities, each with its own initial and final momenta 

and It was the analytic continuation Pai ~ of these 

momenta into each other that was the basis of the discussion of 

conjugation in § 2. 6. In that context antiparticle 

conjugation was equivalent (up to a to reversing the directions 

of all the quark arrows. This reversal was accomplished by an 

equivalent analytic continuation. In that continuation the vector 

p in the propagator p•o/m continues to be the momentum associated 

with a fixed end of the line. Thus an ortho propagator 

is transformed into an ortho propagator, and para goes into para. 

We therefore define conjugation to be the operation 

of reversing the direction of each quark edge, with the ortho-para 

type left Thus antiparticle conjugation interchanges 

the two graphs (a) and of 4. 

2 2 

(a) (b) (c) 

Fig. 4 Graphs (a) and (b) are related by antiparticle 

Graph (c) is graph (b) turned over. 
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The scalar frnctions are assumed to be rnchanged by anti-

particle conjugation. Thus the amplitudes associated with 

and 

and are 

Ao = 
a 

n 
( _!_) (Tr s

1 
·0 u

1
·o 

12 
s •iJ n 

•o) f 0 (p) 

0 

Ab 
1 n 

( - ) (Tr sn•cr un•o . . • n1• o) f!l 
n: 

Then use of (2.65) and (2 gives 

I: 
Ao 

a 

(3.9a) 

(3 

(3.10) 

Quark flavors have not yet been discussed. Introduction of the 

up and down quarks yields the 'IT, p, n, and w mesons. To get 

the corresponding to a with these mesons as the 

external particles one includes for each vertex the isotopic 

factor defined in Fig. 5: 

emits p or 'IT = - 1 

emits p or 'IT f. 
]_ 

= + 1 

H •• 

emits neutral ~£son f. =_!_ 
l 12 Figure continued 
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emits neutral meson 

1 

12 
1 

12 

0 
1T ' 

0 
TJ ' 

Po 

0 
w 

Figure 5. The isotopic spin factors. The full zero-entropy 

amplitude for any process involving a set of n of these mesons 

is the sum of the amplitudes corresponding to all the ways in which the 

particles of the reaction can be identified with the vertices of 

ortho and para graphs with n vertices. 

G-parity is conserved for the ortho and para amplitudes 

separately. To see this note that for each ortho (para) graph 

to a process there is another one in which the u and 

d quarks are and the cyclic order of the particles is 

reversed. The two associated ortho graphs are related as the two 

graphs (a) and (c) of Fig.4 apart from flavor labels. Since (c) is 

equivalent to (b) one obtains the factor (3.10) together with 

the isospin factors shown in .5. These factors combine to 

give factors for the graphs (a) and (c) that differ by the factor 

(Isospin)i. Thus the sum of the two contributions is 
i 

where 

Ao + 
a 

g 

A0 (l + 
a 

~ (Spin)i + i 
i 

(3.lla) 

(3.llb) 

The factor (-l)g is G Hence G is conserved 

for the ortho and para parts separately. 
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3.5 Products 

The formt!las involve product$ of amplitudes 

represented by graphs of the kind ·shown in Fig. 6, 
1 6 

Figure 6. Diagrams representing products of amplitudes. The 

wiggly lines represent the intermediate mesons. 

For each wiggly line there is a sum over the single 

meson and the three vector mesons. When this sum is the 

spinor parts of these are the spinor parts of the 

functions associated >vi th the diagrams of Fig. 7. 

2 
2 5 

3 

(a) 

Figure 7. Alternative representation of the parts of the pro-

ducts represented in Fig. 6. A circle with no vertices represents 

-Tr l = - 2. 
In other words, the spinor parts satisfy the diagrammatic equations 

of Fig. 8. 

~ 
~ 

.....;;> 

Fig. 8. Spinor Identities 
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To obtain this result, and also a more general one, let the four 

orthogonal vectors si associated with particle i be labelled 

eE:(0,1,2,3), with u s .. 
1e 

= for e 0. To get the correct 

normalization we return to the level of the S matrix. Then the 

four amplitudes Se are defined by 

se 
sr • iJ 

Tr _e __ S 
12 

1 r _;13 
- s ·a 
,lZ e sl3~ (3.12) 

where the irreleva~t indices on S have been suppressed. The 

arguments of §2.3 then show that 

se 
se • a 

Tr -- M. 
l'l 

Consider therefore a product of the form 

3 
::E 

e=O 
s s' e e 

3 s•a s·iJ 
e e ' 

.::E (Tr -- M) (Tr -- M ) 
e=O 12 12 

To evaluate it introduce into the second trace the 

s ·0 e v·iJ s8 •o v•0 

(3.13) 

(3.14) 

(3.15) 

where v is the velocity ±p/m of the relevant particle &1d 

0 1 2 3 . s = s 0, s = , s =- s 2, s =- s 3. (Each se lS a four vector). 

Thus 

Use of 

gives 

Use of 

gives 
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3 
::E ' 

e=O 

3 
.} .::E (Tr M se. a)(Tr se. 0 v·a M' v•a),(3.16) 

e=O 

1 
2 

3 

3 
.::E (s )11 (se)v 

e=O e · 
rfV 

3 
.::E 

e=O 
s s' e e 

1 ''I JlV - M ' · -) 2 "· g <;; v•a v •a . 

a ~13 
0 8 u y 

3 0 s • a 
.::E S S' 

e=O e e 
::E (Tr M (Tr _e __ M') 

e=O 12 

Tr M v•a M' v•a 

(3 .17) 

(3.18) 

(3.19) 

This resu1 t says that summing over all four exchanged particles is 

to the quark lines straight with 

metric factors v • a placed on each quark line that goes 

as indicated in 9. 
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3 v • Ci 

I: ---->--~--+----·-· 

v • Ci 
e=O ---+-----+----·-

Figure 9. Diagrammatic representation of (3.19). 

The results represented in Figs. 7 and 8 follow 

directly from the result represented in Figure 9. 
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The two factors v • Ci are cancelled by two factors v • 0 and 

~v • 0 . The differing signs of these two factors comes from the 

differing signs of the vectors p = ± mv in the two factors M and 

M': discontinuity products always involve one initial 

and one final particle. The extra sign from -v•o supplies the over~ 

all sign occurring in (3. 5); the change shown in Fig. 9 always 

changes by one the number of traces. Thus each trace will appear 

(or disappear) with its minus sign. 

3.6 Topological Classification 

Each circular quark graph G corresponding to a zero-entropy 

ortho or para can be transformed the rule illustrated 

in Fig. 10 into a particle graph 

5 

2 
4 

2 

g = g(G) with one internal vertex. 

2~5 
-3~4 
1 

2--~-~...-

3 

Figure 10. Transformation of circular ortho and para graphs G 

into the corresponding basic particle graphs 

If G is a circular graph with n vertices then g(G) is a 

tree 2ranh with n edges, n exterr_al vertices, and one internal 

vertex. This internal vertex of is classified as ortho or para 

according to whether G is ortho or para. These two kinds of 

internal vertices can be distinguished in the way illustrated in 

10. The arrow near each internal vertex shows the direction of 

rotation of the quark line around that vertex. These graphs g are 

called basic particle 
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A product of basic particle graphs g1 , g2, . . . is fonred by identifying 

oertainpairs of the external vertices, as illustrated in Fig. 11. 

-------..7 
r; 

"L 

:,-

3 

"" 
Figure 11. A product g of 5 basic particle graphs gi. 

Each product graph g has a well defined genus and uv<~"Ja"'' 

structure. These can be calculated the Edmond's rule. One first 

draws all the orbits of g. An orbit of g is a in g formed as 

follows : one any p on any edge of g and a direction 

at that point. Then one traces a in g by a 

p' that starts from p in the direction At each nontrivial 

vertex the moving point p' shifts to the "next" line, with the order 

of the lines specified by the arrow that indicates the 

direction. The orbit is when the moving p' returns 

to the original point p moving in the direction 

Some of the orbits may pass through vertices that lie at the 

ends of single (external) edges. These vertices correspond to the 

"external particles" associated with the graph. An orbit that passes 

through at least one external-particle vertex is called a boundary. 

The structure consists of the collection of boundaries, each 

identified by the sequence of external-particle vertices which 

it passes. Each vertex appears on exactly one boun-

dary. with only one are called one-boundary graphs. 

The number of different orbits of g--sometimes called faces 
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of g-- is denoted by f(g). The numbers of edges and vertices of 

g are denoted by e(g) and v(g), respectively. Then the genus 

of g-- sometimes called the handle number--is given by the Euler 

formula 

e(g) - v(g) - f(g) + 2c(g) (3.20) 

where is the number of connected components of g. The of 

11 has one orbit, which is the (8, 6, 5, 9, 7, 4, 3, 2, 1), 

and its genus is two. 

The zero-genus one-boundary are the planar They 

are the that can be drawn on a plane with no lines crossing 

and all external vertices identified with a single at 

An important characteristic of a graph g is its Betti 

number 13 (g) , which is the number of closed loops that 

can be drawn in the graph. Itsvalue is given by 

13 e(g) - v(g) + c (3.21) 

Let the number of boundaries of g be The orbits that 

are not boundaries are called windows, and their number is 

b The most important topological characteristic 

of g is the topological index 

y(g) 2h (g) + - c(g) 

(3. 22) 

13 



44 

This is the number of independent closed loops in g minus the 

number of windows. For connected graphs with at least one boundary the 

topological index y(g) is zero if and only if the graph g has 

zero-genus and exactly one boundary, i.e., if and mly if g is planar. 

This topological index y (g) enjoys the following "entropy" 

property: if g1g2 is some connected product of two connected graphs 

gl and gz then 

Y(glg2)~ Y + YCgz) - L (3.23) 

To prove this let n be the number of vertices at which 

and g2 are joined. Then (3.21) gives 
gl 

B(glg2) s + s Cgz) - 1 + n. (3.24) 

On the other 

w(glg2) + w(g2) + w' (3.25) 

where w'(g1 ,g2) is the number of windows of g
1
g

2 
that lie 

partly in and partly in g
2

. 

Each of these windows that lies partly in each subgraph must 

pass at least twice the n jw1ction And each junction 

point lies exactly twice on the set of orbits Thus one has the 
inequality 

w'(gl,g2) ~ n, (:';.26) 
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which combines with (3,24) and (3.22) to give (3.23). 

The entropy property (3.23) shows that the topological index 

Y(g1g2) of a product graph g1g2 is greater than either component, 

provided one of them has y(gi) >1. This means that the topological 

complexity, as measured by y(g), increases in general. The 

special case y(gi) = 1 allows the complexity to remain unchanged. 

If one of the graphs has y(gi) = 0 then (3.23) would allow 

for a decrease in complexity. However, if y = 0 and the 

product g1g2 is such that at least one external vertex of 

is an external vertex also of the product graph g1g2 then the RH 

side of (3.26) can be replaced by n- l, since then at least one 

boundary of g1g2 must pass twice through the set of junction 

points, and y(g1g2) ;:;, y + y(gz). 

The graphs corresponding to physical-region singularities can 

always be constructed by taking successive g1 , g2g1 , 

g3g2g
1

, . . . so that the final exterml particles of each newly 

added graph are also final external particles of the new product 

graph. 13 If the product graphs are built in this way then the 

topological index y(g) can never decrease. 

The product graphs g are classified by their overall 

boundary structure and genus, and by their decomposition into ortho 

and para parts. This decomposition is made as follows: The trivial 

two-edge vertices at which two are joined are called junction 

vertices. Each junction vertex that lies on a line joining an ortho 

vertex to a para vertex is cut. This cuts the into a set of 

such that the internal vertices of each graph are all of 

the same either ortho or para. Each of these has a 
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boundar/ structure and genus. The complete topological classification 

of the graph 0 
b 

is given by specifying the boundary structure and 

genus of each part gi, and the set of pairs of external vertices of 

the graphs that are equated to form the junction vertices of g. 

These specifications determine the overall boundary structure 

and genus of g itself. However, these overall characteristics 

are nevertheless included, redundantly, in the complete topological 

specification of g. 

g that have the same topological specifications are 

said to lie in the same topological class. The zero-entropy graphs 

are the graphs g with a single (ortho or part = g and 

topological index y(g) 0. The simplest of these are the basic 

graphs g of the kind illustrated in Fig. 10. 

The discussion of topological classification above was 

made completely in terms of the particle g. It is sometimes 

useful to combine the part.icle g(G) and the quark G into 

a single g(G), in the way illustrated in Fig. 12 

.s: 

<- 2 

3 
3 

'+ 

G g 

Figure 12. A graph G and the g(G) formed 

from G. The particle lines of g(G) are drawn as dotted lines in 

g 
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The orbits of g can be considered to be the independent 

closed loops on the quark lines of g(G). Those closed quark-line 

loops that pass through vertices are boundaries. Those that do 

not are windows. The number of vertices and edges that occurs in 

the Euler formula (3. 20) for the genus is the number of vertices a11d 

edges of the particle graph g(G), which is a subgraph of g(G). 

3.7 Topological Expansion 

Each physical-region singularity of the S matrix is associated 

with a Landau graph gL. A formula for the discontinuity around 

the singularity associated with graph gL is obtained by replacing 

each vertex of g-_ bv the corresponding scattering •16 

This scattering function is specified by the set of edges incident 

upon the vertex to which it corresponds. These edges can be 

identified with the external edges of the particle graphs g 

constructed above. 

The expansion is the assumption that each 

function can be expressed as a sum of terms, one corresponding to 

each of the different topological classes specified in the preceding 

subsection. This expansion is required to be with the 

discontinuity formulas, in the sense that if the full expansion is 

introduced into each of the scattering functions that occur in any 

equation, and the full equation is then decomposed 

into terms of different topological class then the terms of each 

class separately satisfy the equation: there is no cancellation 

among the terms in the equation that have different topological 

character. This that the contributims to any discontinuity 
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equation correspondir;g to of the same character 

should cancel among themselves has been discussed extensively before, 

. . . h l d . . f l d" . . f" 1 15,16 17 In connection \Vlt t,le •errvat1on o· tl<:' 1scontulu1ty ·ormu as ' . 

l:-~- The Zero-Entropy _ _£unctions 

The validity of the topological expansion is assumed. Then the 

zero-entropy component of any discontinuity equation can be examined. 

Each scattering function is the sum of a pure ortho part plus a 

pure para part plus higher-order terms formed from products of ortho 

and para parts. These parts do not contribute to the 

zero-entropy component of the discontinuity equation. Thus the zero­

entropy component separates into two parts, an ortho part and a 

para part, each of which must separately be satisfied, since each 

belongs, according to our classification scheme, to a separate 

topological class. 

By virtue of the entropy property the zero-entropy terms can 

be formed only from zero-entropy factors. Thus the scattering 

function associated with each vertex of the Landau graph is replaced, 

in the ortho (para) zero-entropy component of the full discontinuity 

equation, simply by the zero-entropy ortho (para) amplitude. Consequently 

all the discontinuity equations for the zero-entropy ortho (para) 

amplitudes are identical to the discontinuity equations for the full 

scattering function with two exceptions: (1) the discontinuity 

is zero unless the Landau graph is planar; and (2) the full scattering 

amplitudes are replaced everywhere in the discontinuity equation by the 

corresponding ortho ( para ) amplitudes 

By virtue of the occurrence of only those that 

correspond to planar Landau graphs the analytic structure of the 

ortho and para functions is muc.h simpler than that of the full 
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scattering function. It is expect:ecl that these functions should have 

poles but n') cuts. They should, in a firc;t 

approximation, be o;imilar to the Veneziano dual-resonanc·e model 

f . 18,19 . J h 1.. . f . f} f" . unctions, w1t1 t e aad1t1on o a sp1n- avor structure, 1n1te 

widths, and a planar singularity structure in momentum space. 

3.9 Regge Recurrences 

The property represented in (3 .19) and 9 says the spinor factor 

in the zero entropy fcmctions or has the pole-factorization 

property indicated in 13 u-, 3 -1 

j}'>L (>" ... j 
e=o 

Figure 13. Pole factorization property. 

Thus if fo(p) has a factorizable 

pole corresponding to a certain value ~ ~ l of angular momentum 

transferred between (1, ... , m) and (m + l, ... , n) then the full 

function A
0 

has factorizable poles corresponding to a set of four 

intermediate states, having total angular momentum values J = ~ 

and 2 + l, ~, £ - 1. 

If f
0

(p) has Regge behavior of the kind exhibited by the 

Veneziano dual-resonance function18
, then for each factorizable pole 

of f
0 

(p) corresponding to orbital angular momentum ~ ~ 1 there 

will be a quartet of factorizable poles of A0 (p) corresponding to 

total angular momentum £ &nd (~ + 1, 2, ~ - 1). 

The function f
0

(p) is assumed to have a Regge pole with the 

lowest 9., = 0 pole identifiable with our external set of sixteen 

mesons ('IT, p,w,n), which are assumed to be in the zero-

entropy level . The va.lues of ~ will then generate recurrences 
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of the set (n,o,w,n). 

If the functions and are now generalized to 

represent the cases where the external particles are recurrences of the 

9- = 0 mesons then one must include~-' for each external particle i 

of angular momentum 2-- a set of vector indices, (i) 
l .. 

that are such that P· • fo = pi • fp = 0 when the inner l 

is formed with any one of the indices (i) 
]19,. Consequently, 

J 
the earlier equation 

fp (p) = ) = fo(p) = fo (3.27a) 

becomes replaced by 
n 

(p) = 
. zl Q,. 

) = (-l)l= lfO (3.27b) 

When nonzero values of the 
a. 

9,. 
l 

are allowed there is also an 

extra factor of (-1) 1 in the conjugation equation (3.10). 

This comes from a consideration of, for example, the two definitions 

of and p irr~licit in Figs. 14a and 14b. 

f+ 

+ j' 

)~ 
) ( 

Figure 14. The no1mal quark structures of P
7 

and p is shown in 

, whereas (b) shows the definition induced the 

lines. If the quark wave function has angular momentum 9,. then the 
)0. l 

difference is represented by a factor (-1) 1 

In the discussion in §3. 4 of 1sospm invariance there was no 

change in the definitions of 
+ 

p 

Sl 

and p of the kind sho'-''11 in 

Fig. 14. However, the f:.mct ion (p) was due to a reversal of 

the order of the arguments. (See Fig. 4(c)) fn the dual-resonance 

amplitude19 this change induces a (-1) , and we assume 

that this property holds also for our function fv 

fo ( -1) ' ~ ~ ~ ' ~ . ~ ' (3.28) 

The fact that one gets the same factor (-1) by either rever-

sing the direction of the quark arrow, as in 4, (a) + (b), (or 

Fig.l4, (a) ~ (b)) or by the cyclic order of the vertices, 

as in Fig. 4, (a) + (c), meat<s that the amplitude corresponding to 

a graph does not depend on how this is placed on the paper: 

the operation of over or reflecting a as in . 4, 

(b) +(c), does not alter the corresponding to it. Thus 

the equivalence of the two of 2, or of . 3, is 

maintained also for Q,i >O. 

3.10 Suppression of Ortho-Para Mixing 

Chew and have discussed the 

to graphs g with topological index > 0 should be suppressed 

relative to the = 0 contributions. A 

mechanism for the amplitudes to the nonplanar graphs 

comes from an over poles along a Regge trajectory. 

In certain situations these contributions appear with a factor ( -l) 9,. 

If the factors smoothly on £ then there should be 

strong suppression. 

The present theory differs from that diso.Lssed Chew and 

the inclusion of spin. This has led to the ortho 
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and para amplitudes, and then to contributions in which ortho 

amplitudes are coupled to para mnplitudes. 

If a line i of a grapl1 g connects an ortho vertex to a para 
£· 

vertex then (3.27b) introduces a factor C-D 1 into the corresponding 

amplitude. This should give a suppression analogous to the one discussed 

by Chew and Rosenzweig. 

3.11 Doublets 

The theory has, by construction, no parity-doublet partners 

of the basic 16-plet (TI,P,w,n)· Consider, then, the exact pole-

factorization property 

Residue (A 0 + + = + + 0
) • (A~ + A~ 

represents the higher order terms. 

+ H~'o) 

(3.29) where Ah.o. 

Each amplitude +A} + conserves parity, with the parities 

defined in the way specified under Eq. (3.8). This is true for 

A~ + , by explicit calculation, and will be true in general 

because of the general property that each contribution is constructed 

from sums over ortho and para parts, not differences. Thus the initial 

and final states in (3.29) will have parities that are equal to the 

parities of the intermediate particles (TI, , as defined 

under (3.8). 

Consider, however, the zero-entropy part of (3.29): 

Residue + = 

+ ) (3.30) 
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The differences (A? - Ap) have, by virtue of the results obtained in 
l l 

§3.2, transitions only between states of opposite parity, provided the 

intrinsic are defined as under (3.8). Thus the initial 

and final states in the last term of (3.30) have opposite parity to 

the initial and final states of the other term. The normal way to 

describe this situation is to say that (A? conserves parity, 
l 

but couples to the parity-doublet partners of the (TI,P,w,n). In 

this sense the zero-entropy level of the topological expansion has 

parity doublets, even though these are not present in the full 

solution. 

This situation emphasizes the fact that the zero-entropy 

approximation is expected to be a good approximation in situations 

where one can average over many values of £. The difference between 

the "correct" and the zero-entropy forms of the residue is 

to, l 
2 + + A~) = + 

Tnis difference is to become small when averaged over many 

values of £, with a smoothly varying weighting factor. But for 

individual £ values it is large. 

4. BARYONS 

4:1 The Zero-Entropy Amplitudes 

E 1 . ff 6-lO . d b . h 1 . . ar 1er e· orts to 1nclu e aryons 1n t e topo og1cal expansion 

correspond to a picture of the baryon as a set of three quarks lying 

on the outer edges of three strips whose inner edges lie in close 

proximity to a single "dotted" line, called by various authors a 

dotted, junction,or mating line. This approach leads to 

insurmountable difficulties with the analytic structure. A brief 

discussion of these difficulties is given in the appendix. 
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Analysis of these indicates that the zero-entropy 

structures for general hadronic processes must be essentially the same 

as those for meson processes, namely circular graphs. This can be 

achieved by considering some of the edges to represent diquarks. The 

theory then has mesons, baryons, , and baryonium. Each 

meson vertex lies at the junction of two quark edges. Each baryonium 

vertex lies at the junction of two diquark edges. Each baryon and 

antibaryon vertex lies at the of a edge and a diquark 

edge. 

Our convention is to run the and diquark edges in opposite 

directions around the circular with a quark and edge 

into each vertex and out of each anti baryon vertex. 

The and edges are drawn as thin and thick lines, 

The rules for the ortho and para are 

essentially the same as in the meson sector, with the 

propagator the form of two propagators. 

For example, in the ortho amplitudes the diquark propagator is 

AlA2 6182 

ala2 

1 
2 0 • 6 Ua· azS2 

+ u · 0 • A cS a a ,_, ua. ·~ 1 2 l~Z u o 

Azo7 
cS - (4.1) 

, 

where = pa/ma is formed from the mathematical momentum-energy· 

vector Pa of the particle associated with the vertex that lies 

at the leading end of the diquark edge. The para propagator 
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is the same with replaced by = - , where is 

the mathematical momentum-energy vector of the particle associated with 

the vertex that lies on the end of the diquark edge. The 

indices 

For 

argtunents 

,\) 

A. 
1 

and are flavor indices. 

each baryon in a scattering function there is a set of 
A A A 

( 1a2a3 ) consisting of an ordered triplet of pairs 
al 2 3 

of spin-flavor indices. The labelling in (4.1) corresponds to 

assigning the first two pairs to the diquark and the final pair , 

to the quark. This particular way of labelling corresponds to one 
. . \ A2A3 . . . . 

contribution to This contr1but1on 1s called a a a 
(2)\ Ai3 1 2 3 

whereas the other two are called a a a and A a a a · 
1 2 3 1 2 3 

Tl~e (e) designates the position (1, 2, or 3) 

of the pair of spin-flavor indices that are assigned to the 

The three contributions are represented graphically in Fig. 16. 

l. 

3 

2. 

3 

Figure 16. Three contributions to 
\ AZA3 

Aa a a 
1 2 3 

2 

3 

In contribution 

the is labelled by the pair of arguments , that stand 

in the position e. 

This sum over the three ways of the quark is made 

for each and Thus b 

be an index that labels the baryons and antibaryons that contribute 

to a process, and and be the operators that effect 

the cyclic permutations (1 + 2 _,_ 3 + 1) and (1 + 3 ->- 2 + 1), 
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respectively, on the three variables associated with baryon or 

antibaryon one may write the full amplitude A as 

A= (3) + ) ' (4.2) 

where is the operator in the space of the three quark 

variables associated with baryon or antibaryon b. and and 

AP(3) are the ortho and para amplitudes in which the quarks are 

labelled, for every b, the ar~ents standing in the third 

. . . . A.b J,.b) pos1t1on 1n the tr1ad 2 3 . 
b b 

a2 a3 

The A associated with the tth orbital recurrence 

of baryon b has a term that is represented attaching a set 

, ... , ~1) of vector arguments to A. In the case of a baryon or 

antibaryon each of these vector arguments is associated with a 

two-dimensional representation space of the group s3 of permutations 

of three objects. the two-valued index that labels the com-

ponents in this space be denoted (1~ 2) the action of 

and ?~ on A(3) = + AP(3) is represented as follows: 

super scripts b are now suppressed) 

A. A A a · 
A(3) 1 2 3 (~l'o1;~2'cr2; • •• ' t· 

alal11 3 

01.301.10:2 

~ 

,o1 ;\.! 2 ; ,. ;ll.~~,,oR, 

i=L .... ,2 

t 

i=l 
(PJoioi' 

3a) 
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P crl; llz,oz; , •• ; ,a£ 

2 

:E 

i=l, •.. ,£ 

A(3) 
aza.3a1 

£ 

'U .. 11 ~ ,crl' llz, o2 , 

(P _)oioj_ (4.3b) 

where (P+)o.o! and (P_)0 _ 0~ are the two-dimensional matrices that 
1 1 1 1 

represent the permutations P+ and , respectively. 

The two-dimensional representation-space associated with each index 

Pi can be considered to arise from the fact that the indices lli 

refer to the angular momentum of a system. In a 

constituent-quark model these vectors would be constructed from the 

vectors20 

and 

1 

IT 
rz)ll 

- 1 -.n: (2r3 - - rz)ll , (4 

which are basis vectors of the two-dimensional representation of the 

group of permutation on three objects. 

To understand the of this two-dimensional .,.,,.,.,."'"'"'"'~< 

space consider a simple constituent model for the Then our 

amplitude would be constructed as follows: 
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(3) \\2\3 A . ( . ~Oiz~ Lj_' 01' ... ; C!,iPl 

cS 3 + r + r3) = 2 

\ Az\3 

~Oiz~ 
(r prz, : (rz + r2 + 2) -'l /2 1 2 r3 

1 

1 
,g-

- } (4.5) 

- r2) 

where the upper (9r lower) part of the .!_th vector factor is used if 

oi is 1 (or 2). The upper vector Jcr1 ~ ri gives the momentum 

of the two quarks of the diqua.rk, whereas the lower vector gives the 

angular momentum of the system20 • 

To fix ideas suppose, for example, that , r 2, r 3: 

depends on and r 2 only through the combination - r 2) 2. 

And suppose 'l = l. Then the in (4.5) will give zero 

for the upper component labelled o1 = 1, and the function 

, will represent the situation in which the orbital angular 

momentum of the quarks in the diquark is zero, whereas that of the 

quark-diquark system is one. 

The variables (~, ~' r 3) the third position in 

the arguments of play a distinguished role: they label the 

The function is to be the same function, but 

with variables lying in the first position playing this distinguished 

role: 

\ 1\ t 3 , r 2' r 3 : 
a1aP3 

A:fY.2 , r2: 
Ol.:fl-101.2 

And the function /3A is the sum: 

+ 

13 A AlA 2\3 
01.101. ;p. 3 

1\2A 3 

a1aP3 

zA3 

a1aP3 

+ A(3)\l\zA3 

a1aP3 

' ' r3 

' r2, r3 

' r2, r3 

' r3; 

\2A3A1 . 
(r2, . 

aza~l 

A3AlA2 c r2 r3, 
+ 01.301.101.2 

+ AlA2A3 
alaz01.3 rz, r3 :p 
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(P- + 
+ I) A (3)AlA2A3 

alaza3 ' rz, 

These P+ and P act on both the 

(4.6) 

(4.7) 

( 4.8) 

arguments and also on the arguments These latter 

transformations are represented transformations in the two-

dimensional space spruTrred 
lZ 

and l_ 
115 



\ A2A3 

C)_ 0:20:3 
(l_,ol; ... 

= 03 + 

58 

+ r 3) 

\ A2A3 C]_O!z~ ,r2,r3: p) cri + r2 + r2)-9../2 2 3 

-

1 

1 /() (2r3 _ 
} (4 5) 

where the upper (i:Jr lower) part of the :!:_th vector factor is used if 
1 

o. is l (or 2). The upper vector =-(r1- gives the angular momentum 
l ~ 1 

of the two of the whereas the lower vector the 

angular momentum of the 

To fix ideas suppose, for example, that ' r2, : p) 

depends on and r 2 only the combination - 2 rz) . 

And suppose 9.. = l. Then the in (4.5) will give zero 

for the upper component labelled o1 = 1, and the function 

will represent the situation in which the orbital angular 

momentum of the in the is zero, whereas that of the 

system is one. 

The variables ( ~, occupying the third position in 

the arguments of play a distinguished role: they label the 

quark. The function is uuuu~ea to be the same function, but 

with variables lying in the first this 

role: 

59 

A lA Z' 3 , r 2 ' r 3 : 
ala2"3 

A 3A lA 2 

O::f1.1C<2 
(r3' ' . 

And the function /3A is the sum: 

13 A AlA zA 3 

alaZC'3 

lA zA 3 

Ct1Ct:f'3 

+ A'-' - 2A3 

+ 

+ 

+ 

alail'3 

A .... ~.~ 

zA3 

Azi,3Al 

ap:rl 

2 

a3ala2 

Aycz/\3 

OL10:zil3 

(P + + I) 

These 

, r2, r3 : p) 

' rz, 

, rz, 

, rz, r3; 

' : p) 

' r1, r 7 : p) 

' ' 
:p 

, rz, 

and P act on both the 

(4 .6) 

(4.7) 

(4.8) 

arguruents &~d also on the arguments r 1 . TI1ese latter 

transformations are 

di'llensional space spailJled by l 

/Z 

trarQformations in the two-

and 1: 
16 

-
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To see this clearly suppose that the function 
A A A 

A (3) l 2 3 r : p) has the fonn 
ala2o:3 , , 3 

Then 

pC3/'IA2A3 

a1a2o:3 

A (3)AlA2A3 

ala2a3 

3 2 2 
6 (r 3 - r ) o ((r 

1 
- r 

2
) - c ) 

' 01: 

. {~t. (' if 0 = 1 
l 

if 0 = 2 
1 

(4.9) 

(4.10) 

The function would be identical if expressed in the basis 

.!.. Cr2 - r3\J 
( 4 .11) 

The result in this basis can be transfonned into the original basis 

a transformation representing a cycle permutation. 

The most convenient basis for this purpose is the one in which 

and P are diagonal. The two basis vectors in this representation 

are 
l 

13 (r 3 + q r 1 + q 
and 

1 - (r3 + q 
/3 

+ q rz) , (4.12) 

where 

q 

and 

q 
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(-1)1/3 1 . 13 
- 2 + 1 2 

2 
q 

1 . /3 
- 2- 1 2 

In this representation 

0 

and 

p 

In this representation the vector .!.. (2r 
3 

-
16 

represented by 

(3) 
1jJ 

Thus 

p 1jJ (3) 
+ 

and 

= 

= 1jJ (2) 

l - (2r -
16 3 

1 - - (2r2 - - r3) 
/6 

l 

(4.13a) 

(4.13b) 

(4.14a) 

(4.14b) 

is 

(4.15) 

(4.16) 

p 1jJ (3) = - (Zrl - rz - r3) 

= 1jJ (1) 
(4 .17.) 
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imbedded. Then for graphs . g of topological index Y(g) = 0 

both the graph g and the quark-diquark graph G are 

planar, as before. 

The quark-diquark lines of g(G) never cross each other in 

the surface. Neither do the particle lines. However, a 

line may cross a particle line, in the way shown in 18. 

This "cross-over" constitutes an element of topological complexity, 

and is excluded, by definition, from the zero-entropy graphs. 

The cross-over quark line in the cross-over of Fig. 18 

separates the part of the strip from the left-hand part. 

This transition is treated in exactly the same way as an ortho-para 

transition: in the classification the g(G) 

is cut along the cross-over quark line. Thus each part 

of the full graph has no transition and no cross-over 

transition. 

The surface associated with a general hadron graph g(G) 

is not always orientable. A simple non orientable graph g(G) 

is shown in Fig. 19. 

19. A graph with non orientable surface. 

The genus of this graph is 
~(g) - v(g) - f(g) + 2 

2 

6-6-1+2 1 
2 
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The value corre!?pond$ to the presence of a "cross-cap", 

which can occur on a non oriented surface. 

The topological index y(g) of the graph is 

y (g) s(g} - w(g) 

sCg} 1 

The number of closed loops S(g) is the number of independent closed loops 

in the graph by the dotted lines of g. The 

number of windows w(g) is the number of orbits of that do 

not pass any vertex. The entropy property and its 

are the same as in the meson case. 

4.3 Orbital Suppression Factors 

The ortho-para transitions are suppressed by the factor (-1)~ 

as in the meson case. 

The orbital angular momentum ~ is now assumed to reside in the 

quark-diquark system. Then the of the amplitudes 

on each of the indices is given by the vector defined 

in (4.15). Thus (4.18) and (4. give an explicit orbital angular-

momentum factor 

ICI+ +PJI ). 

(4.13) and (4.14) give 

(1);(3) II j1);(3)) 

(1~(3)1 

1 

1 
2 

(4. 

(4.2la) 

(4. 
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(4,2lc) 

There is one of these factors for each one of the ~ indices 

in (4.18). The combination of (4.21) with the ortho-para factor of 

~ gives the explicit orbital factors indicated in 20 

0 0 " (+1)~ p .· " -- f-< p 
--{---E-

0 . -- p p 0 

0 0 p-- . .,I-<- p (-~)t 

0 p p 0 (~)t 

Figure 20. Orbital Suppression Factors. 

Thus for large t there is, 

in an average sense, an explicit suppression of both the ortho-para 

and cross-over transitions. Hence the dominant large ~ behavior 

should be the one in which there is no mixing and no 

fragmentation (i.e. no cross-overs) Thus at large ~ the 

physical Regge trajectories should approach the trajectories of the 

zero-entropy amplitudes. 
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three quarks in each baryon a two-dimensional representation space 

of the group was introduced in association with each of 

the angular momentum indices vi(i = 1, ... ,t) associated with each 

or antibaryon recurrence. This representation space can be 

understood on the basis of a constituent quark model. However, it 

reflects only certain group-theoretic aspects of such a model, not 

its dynamical aspects. The dynamics in the present is 

represented, as usual inS-matrix theory, by the combination of the 

on-mass-shell requirements of unitarity, analyticity, 

invariance, where the h~variances now includes not only Lorentz 

invariance but also invariance on the three indices 

associated with each as defined (4.3). 

Since the permutation group theoretic structure is the same as that of 

the model,with all orbital momentum in the 

separation, the yields the usual particle spectra 

at the lowest ~-values, and in particular the usual (56, and 

(70, The zero-entropy equations should generate a 

single Regge ectory corresponding to these two If 

the various suppression mechanisms are indeed operative then the 

corrections to these ectories should be suppressed 

at high ~-values, and hence the physical even and odd ectories 

should merge at high t. An test of the theory will be 

the calculation of the separations of these trajectories as one 

moves to lower t values. The corresponding calculation in the 

4. 4 Particle ·Spectra vector meson sector were successful 2. 

To represent within the general S-matrix context the requirement 

of symmetry under the permutations of the variables to the 
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Another important test will be the calculation of the separation 

between the vector and pseudoscalar meson trajectories. A third 

important test will be the calculation of the 0 + -
p + 1i 1T decay rate. 

J\:penclix .Failure of the Earlier Schemes 

6-10 In the earlier baryon schemes the product represented by 

the graphs of Fig. 21 was classified as zero entropy. 

----+ 

(a) 

Figure 21. A product classified as zero entropy by the earlier baryon 

topological expansions schemes. The quarks, mesons, and baryons are 

represented by solid, wiggly, and dashed lines, The 

dotted lines are called "dotted" , or "mating" lines by 

different authors. 

The zero-entropy amplitude represented the quark graph on the RH 

side of Fig. 2la has a pole singularity, and the discontinuity 

represented by Fig. 2la has,consequently, an ice-cream-cone 

diagram singularity represented by the of Fig. 22. 

(a) 

.-.~,... 

r --~ 
\ ' 

\ ; 

' ' 
\ ' 

(b) 
Fig. 22. Graphs representing a~ ice-cream cone diagram singularity. 
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This singularity is also classified as zero entropy, and hence 

this singularity should be present in the zero-entropy amplitude. 

This singularity can be followed analytically into the crossed 

channel that corresponds to reading Fig. 22 from bottom to top. 

However,Fig. 22(a) shows that the singularity corresponding to the 

top part of Fig. 22(b) has nonzero entropy, and hence does not lie 

in the zero-entropy part of the corresponding amplitude. Thus a zero-

entropy ice-cream-cone diagram singularityliE;>sina part of the crossed-

channel normal-threshold discontinuity that is formed bycombi-

ning a zero-entropy amplitude with a non zero-entropy amplitude. This 

corDtitutes a failure of the homogeneity property of zero-entropy 

amplitudes whereby all zero-entropy are obtained 

using only the zero-entropy parts of the that occur in the 

various physical discontinuity formulas. 

Any attempt to disrupt Lhe usual tightly knit crossing structure 

by crossed-channel singularities obtained by analytic 

continuation of a zero-entropy into some other term of 

the topological expansion would surely preclude the possibility of 

any natural solution to the zero-entropy equations. On the other 

the inclusion of an amplitude with nonzero entropy into the 

crossed-channel normal-threshold discontinuity for a zero-

entropy would destroy the closure property of the 

equations for the zero-entropy functions. 
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